earticle

논문검색

An Algorithm of Association Rules Mining in Large Databases Based on Sampling

초록

영어

In recent years, the amount of data into a geometric growth puts forward higher requirements on data mining algorithm. In the process of frequent itemsets of traditional Apriori algorithm produced, frequent itemsets' generation and storage are quite a waste of time and space. In this paper, we put forward a new Hash table and use the technology to improve the algorithm and get SamplingHT algorithm, through a lot of contrast experiments showed that the new algorithm enhances performance when frequent itemset is generated, and effectively reduce the database scan times, In order to achieve more optima.

목차

Abstract
 1. Introduction
 2. Association Rule Data Mining Technology
  2.1 Basic concept of Data Mining
  2.2 Association Rule Mining Algorithm
 3. SamplingHT Algorithm
  3.1 The Main Steps of SamplingHT Algorithm
  3.2 New Hash Function
  3.3 SamplingHT Code:
 4. Experiments and Analysis
  4.1 Experiment 1
  4.2 Experiment 2
  4.3 Experiment 3
 5. Conclusion
 Acknowledgements
 References

저자정보

  • Zhi Liu Dalian Maritime University
  • Tianhong Sun Dalian Maritime University
  • Guoming Sang Dalian Maritime University

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.