earticle

논문검색

Centralized Reactive Power Control for a Wind Farm under Impact of Communication Delay

초록

영어

Generally, a wind turbine may have inferior reactive power dynamic performance where constant power control is adopted by a wind farm equipped with doubly fed induction generators (DFIGs). As a result, power system disturbance may incur grid faults where the wind farm cannot provide enough reactive power to the grid. This paper proposes a novel reactive power control strategy with centralized management for a wind farm. The real-time signal representing the voltage at a specified remote location -- a point of common coupling (PCC), is taken into account as an increment of the given value of the reactive power before being transmitted into each wind turbine by the distributed communication networks. In order to implement real-time regulation with reactive power output to the entire wind farm, this signal is meanwhile fed into the control loop in the rotor-side converter. Considering the issue of widely geographical distribution for each individual wind turbine, this paper studies the impact of communication delay on the system performance. As simulation results showing, in both of the cases of grid faults and wind speed fluctuation, the system with this control strategy can provide reactive power complement and keep the bus voltage stable. By using frequency domain analysis, this research also explores that different delay time may result in control failure due to multi-frequency harmonic incurred in the cases of long-term delay.

목차

Abstract
 1. Introduction
 2. Reactive Control Schemes of DFIG
  2.1. Autonomous Control System of DFIG
  2.2 Two Schemes of Additional Reactive Control
 3. Centralized Control Strategy of Reactive Power for Wind Farm
 4. The Influence of Delay on the Centralized Reactive Control for Wind Farm
 5. Simulation Analyses
  5.1 The Influence of Centralized Control on Common Bus Voltage during the Fluctuation of Grid Voltage
  5.2. The Influence of Centralized Control on Reactive Power during Wind Speed Fluctuation
 6. Conclusion
 Acknowledgements
 References
 [APPENDIX]

저자정보

  • Zhuo Chen Department of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
  • Zhenghang Hao State Grid XJ Group Corporation, Xuchang, 461000, China
  • Shuijie Qin The key Laboratory for Photoelectric Technology and Application, Guizhou University, Guiyang, 550025, China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.