earticle

논문검색

Nucleus Detection of Uterine Cervical Pap-Smears using Contour Trucking Method and Fuzzy Reasoning Rule

초록

영어

In this paper, we apply a set of algorithms to classify normal and cancer nucleus from
uterine cervical pap-smear images. First, we use lightening compensation algorithm to re-
store color images that have defamation through the process of obtaining 400x microscope
magnification. Then, we remove the background from images with the histogram distribu-
tions of RGB regions. We extract nucleus areas from candidates by applying histogram
brightness, Kapur method, and our own 8-direction contour tracing algorithm. Various bi-
narization methods, cumulative entropy, masking algorithms are used in that process. Then,
we are able to recognize normal and cancer nucleus from those areas by using three mor-
phological features - directional information, the size of nucleus, and area ratio - with fuzzy
membership functions and deciding rules we devised. The experimental result shows our
method has low false recognition rate.

목차

Abstract
 1: Introduction
 2: Cell Nucleus Area Extraction Process
  2.1: Image Stabilization by Lighting Compensation
  2.2: Removal of Background Using the Histogram Distribution
  2.3: Separation of Cytoplasm and Nucleus Using the Intensity Value
  2.4: Cell Nucleus Binarization by Kapur Method
 3: Extraction of Cell Nucleus Characteristics
  3.1: Directional Information of Cell Nucleus
  3.2: Area ratio in Cell Nucleus
  3.3: Size of Nucleus
 4: Designing Membership Functions for Nucleus Recognition & Nucleus Recognition by Fuzzy Reasoning Rules
 5: Methods and Results
 6: Conclusion
 References

저자정보

  • Hyunjun Woo College of Medicine, Seoul National University, Seoul, Korea
  • Young Woon Woo Dept. of Multimedia Eng., Dong-Eui University, Busan, Korea
  • Kwang-Baek Kim Dept. of Computer Eng., Silla University, Busan, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.