earticle

논문검색

An Improved Super Resolution Image Reconstruction using SVD based Fusion and Blind Deconvolution techniques

초록

영어

The High resolution (HR) images can be obtained from a set of noisy and blurred low resolution (LR) observations by applying the Super Resolution (SR) technique. In this paper a new SR algorithm that uses Singular Value Decomposition (SVD) based Fusion and Blind deconvolution techniques is proposed. The algorithm significantly improves the resolution and eliminates the noise and blur associated with low resolution images, when compared with the other existing methods.

목차

Abstract
 1. Introduction
 2. SR Methods based on the Type of Fusion
  2.1. Average Fusion Based SR:
  2.2. Principle Component Analysis (PCA) Fusion Based SR:
  2.3. Discrete Wavelet Transform (DWT) Fusion based SR:
  2.4. Scale Invariant DWT(SIDWT) Fusion Based SR:
  2.5. Radon Transform Fusion based SR:
  2.6. Image Pyramid Approaches:
 3. Proposed Algorithm: SVD Fusion Based SR
  3.1. Automatic Feature Based Registration Using SIFT:
  3.2. Singular Value Decomposition (SVD) Fusion:
  3.3. Bicubic Interpolation:
  3.4. Blind De-Convolution Restoration:
 4. Results and Discussion
 5. Conclusions
 References

저자정보

  • A. Geetha Devi Dept., of ECE, PVP Siddhartha Institute of Technology, Vijayawada, India
  • T. Madhu Swarnandra Institute of Engg., &Tech., Narasapuram, India
  • K. Lal Kishore Jawaharlal Nehru Technological University, Ananthapur, Andhra Pradesh, India

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.