Session II, 좌장 : 강현아 교수 (중앙대학교)

Micro-structured porous biomaterials based on natural and synthetic polymers




Using a simple fluidic device fabricated with a PVC tube, a syringe needle, and a glass capillary tube, we produced uniform microspheres from poly(ε-caprolactone) (PCL), ethyle-2-cyanoacrylate (ECA), and gelatin. Precise control over spheresize could be achieved by varying the concentration of the discontinuous phase, the flow rates for each phase, and/or dimensions of the fluidic device. We developed inverse opal scaffolds from chitosan and poly(D,L-lactide-co-glyclide) (PLGA) by using PCL and gelatin lattices as templates, respectively. The scaffolds exhibited uniform pore size and well-interconnected pore structure in three-dimensional (3D) fashion. We believe that the inverse opal scaffold could provide a promising platform for both in vitro and in vivo experiments related to 3D tissue engineering. We subcutaneously implanted four kinds of inverse opal scaffolds with different pore sizes into miceto evaluate the effect of pore size on degree of neovascularization. Histology analysis confirmed that the density and area ratio of blood vessels were directly governed by the morphology of the scaffolds. Beside the inverse opal scaffolds, uniform PLGA microbeads with a hollow interior and porous wall were prepared using a fluidic device with three-way channels. The microstructured microbeads could be potentially useful for the encapsulation of cells as well as active agents. We also successfully prepared uniform, porous PLGA beads with controllable pore sizes by employing unstable water-in-oil emulsion as the discontinuous phase, which can be useful for therapeutic cell delivery and tissue engineering. We believe that the advanced materials, including uniform microspheres, inverse opal scaffolds, uniform beads with a core and porous wall, and uniform porous beads, can be applied to most of strategies in biomedical engineering, eventually resolving significant problems that we currently encounter.


1. 학력
 2. 경력
 3. 주요 연구분야/공동연구 가능분야
 4. 수행중인 연구과제
 5. 대표 논문/특허
 6. 보유 기술, 장비 혹은 제공 가능한 물질(표준물질, 저해제, 효소, 항체, 유전자, 세포주등)
 Micro-structured Porous Biomaterials Based on Natural and Synthetic Polymers


  • 최성욱 Sung-Wook Choi. 가톨릭대학교 생명환경공학부 생명공학전공, 조교수


자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 3,000원

      0개의 논문이 장바구니에 담겼습니다.