earticle

논문검색

추천시스템을 위한 k-means 기법과 베이시안 네트워크를 이용한 가중치 선호도 군집 방법

원문정보

Clustering Method of Weighted Preference Using K-means Algorithm and Bayesian Network for Recommender System

박화범, 조영성, 고형화

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Real time accessiblity and agility in Ubiquitous-commerce is required under ubiquitous computing environment. The Research has been actively processed in e-commerce so as to improve the accuracy of recommendation. Existing Collaborative filtering (CF) can not reflect contents of the items and has the problem of the process of selection in the neighborhood user group and the problems of sparsity and scalability as well. Although a system has been practically used to improve these defects, it still does not reflect attributes of the item. In this paper, to solve this problem, We can use a implicit method which is used by customer’s data and purchase history data. We propose a new clustering method of weighted preference for customer using k-means clustering and Bayesian network in order to improve the accuracy of recommendation. To verify improved performance of the proposed system, we make experiments with dataset collected in a cosmetic internet shopping mall.

목차

Abstract
 1. 서론
 2. 관련 연구
  2.1 RFM(Recency Frequency Monetary)
  2.2 협력 필터링
  2.3 k-means 기법
  2.4 베이시안 네트워크(Bayesian Network)
 3. K-means 기법과 베이시안네트워크 기반 가중치 선호도 군집방법을 이용한 추천시스템
  3.1 고객점수기반 가중치 선호도 적용
  3.2 k-means 기법을 이용한 이웃고객 생성알고리즘
  3.3 추천시스템 절차 알고리즘
 4. 실험 및 성능 평가
  4.1 실험 환경
  4.2 실험 데이터 구성
  4.3 분석 및 성능 평가
 5. 결론 및 향후 과제
 참고문헌

저자정보

  • 박화범 Wha-Beum Park. 남서울대학교 교양학부
  • 조영성 Young-Sung Cho. 동양미래대학교
  • 고형화 Hyung-Hwa Ko. 광운대학교 전자통신공학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,300원

      0개의 논문이 장바구니에 담겼습니다.