earticle

논문검색

Genetic Design of Fuzzy Neural Networks Based on Respective Input Spaces Using Interval Type-2 Fuzzy Set

초록

영어

In this paper, we propose the genetic design of fuzzy neural networks with multi-output based on interval type-2 fuzzy set (IT2FSFNNm) for pattern recognition. IT2FSFNNm is the networks of combination between the fuzzy neural networks (FNNs) and interval type-2 fuzzy set with uncertainty. The premise part of the networks is composed of the fuzzy partition of respective input spaces and the consequence part of the networks is represented by polynomial functions with interval set. We also consider real-coded genetic algorithms to estimate the optimal values of the parameters of IT2FSFNNm. The numerical experimentation is used for evaluating the proposed networks for pattern recognition.

목차

Abstract
 1. Introduction
 2. Design of IT2FSFNNm
  2.1. Interval Type-2 Fuzzy Set
  2.2. The Structure of IT2FSFNNm
  2.3. Learning Algorithm
 3. Genetic Optimization of IT2FSFNNm
 4. Experimental Studies
 5. Conclusion
 References

저자정보

  • Keon-Jun Park Dept. of Information and Communication Engineering, Wonkwang University
  • Dong-Yoon Lee Dept. of Electrical Electronic Engineering, Joongbu University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.