원문정보
초록
영어
A very important issue in many applied fields is to construct the fitting curve that approximates a given set of data points optimally in the sense of least-squares. This problem arises in a number of areas, such as computer-aided design & manufacturing (CAD/CAM), virtual reality, medical imaging, computer graphics, computer animation, and many others. This is also a hard problem, because it is highly nonlinear, over-determined and typically involves a large number of unknown variables. A critical step in this process is to obtain a suitable parameterization of the data points. In this context, this paper introduces a new method to obtain an optimal solution for the parameterization problem of the least-squares fitting B큖zier curve. Our method is based on a local search metaheuristic approach for optimization problems called tabu search. The method is applied to some simple yet illustrative examples for the cases of 2D and 3D curves. The proposed method is simple to understand, easy to implement and can be applied to any kind of smooth data points. Our experimental results show that the presented method performs very well, being able to fit the data points with a high degree of accuracy.
목차
1. Introduction
1.1. Aims and structure of the paper
2. Tabu Search
3. Our method
4. Experimental results
4.1. Two-dimensional examples
4.2. Three-dimensional examples
4.3. Computational issues
5. Conclusions and future work
6. Acknowledgements
References
