earticle

논문검색

Color Inference Using an Enhanced Fuzzy Method

초록

영어

Color information recognition methods based on the RGB color model, which is designed on the basis of static fuzzy inference rules, are being widely used at present. However, these methods have certain limitations because of the nature of the model used: detachment of human vision and limited choice of environment. In this paper, we propose a method based on the HSI model and a new inference process that resembles the human vision recognition process. This method allows the user to add, delete, or update inference rules. In our method, membership intervals are designed with sine and cosine functions in the H channel and trigonometric style functions in the S and I channels. The membership degree is computed via an interval merging process. Then, inference rules are applied to the result in order to infer the color information. Experimental results show that our method is more intuitive and ecient than that based on the RGB model.

목차

Abstract
 1. Introduction
 2. Proposed method of color information analysis
  2.1. Color inference using the HSI model
  2.2. Eleven basic inference rules
  2.3. Membership interval merger
  2.4. Changing inference rules
  2.5. Processing for redundant inference rules
 3. Experimental analysis and results
  3.1. Comparison with conventional color recognition model
  3.2. Results of membership interval merger
  3.3. Results of add, modify, delete inference rules
 4. Conclusion
 Acknowledements
 References

저자정보

  • Sang-Geol Lee Dept. of Computer Engineering, Pusan National University
  • Kwang-Baek Kim Dept. of Computer Engineering, Silla University
  • Eui-Young Cha Dept. of Computer Engineering, Pusan National University

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.