earticle

논문검색

Achieving Efficient File Compression with Linear Cellular Automata Pattern Classifier

초록

영어

Files are created for Traffic Analysis, Maintenance, Software debugging, customer management at multiple places like System Services, User Monitoring Applications, Network servers, database management systems which must be kept for long periods of time. These Files may grow to huge sizes in this complex systems and environments. For storage and convenience files must be compressed. Most of the existing algorithms do not take temporal redundancy specific Files into consideration. We propose a Linear Cellular Automaton based Classifier which introduces a multidimensional File compression scheme described in eight variants, differing in complexity and attained compression ratios. This scheme introduces a transformation for File whose compressible output is far better than general purpose algorithms. This proposed method was found lossless and fully automatic. It does not impose any constraint on the size of File.

목차

Abstract
 1. Introduction
 2. File Compression
 3. Types of Compression
 4. Lossy Compressions
 5. Cellular Automata
 6. Cellular Automata with Neighborhood
 7. Computation in Cellular Automata
  7.1 Formal Language Recognition
  7.2 Arithmetic
  7.3 Random Number Generation
  7.4 Image Processing
 8. Universal Computation in Cellular Automata
  8.1 Emergent Computation in Cellular Automata
  8.2 Crossover and Mutation
 9. Emergent Computation in Linear Cellular Automata
 10. Results & Discussion
 11. Conclusion
 References

저자정보

  • Pokkuluri Kiran Sree Professor, BVCEC, India
  • Nedunuri Usha Devi Asst Professor, JNTUK, India

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.