earticle

논문검색

Global Rating Prediction Mechanism for Trust-Aware Recommender System using K-Shell Decomposition

초록

영어

The trust-aware recommender system (TARS) suggests the worthwhile information to the
users on the basis of trust. Existing models of TARS use personalized rating prediction
mechanisms, which can provide personalized services to each user, but they are computational
very expensive. We therefore propose an efficient global rating prediction mechanism
for TARS: we use the k-shell decomposition to find the most influential nodes in the trust
network, and use the recommendations given by these nodes to predict global ratings on
items. The experimental results verify that our proposed method can predict ratings accurately
with low computational complexity.

목차

Abstract
 1. Introduction
 2. Related Works
 3. Our Proposed Global Rating Prediction Mechanism using k-shell Decomposition
  3.1 Degree: A Heuristic Measure on Building the Global Rating Prediction Mechanism
  3.2 K-shell: A Measure to Detect the Most Influential Users in Trust Networks
  3.3 Comparing the Effectiveness of Degree and k-Shell on TARS
 4. Conclusions and Future Works
 Acknowledgements
 References

저자정보

  • Linshan Shen College of Computer Science & Technology, Harbin Engineering Univ
  • Weiwei Yuan College of Computer Science & Technology, Harbin Engineering Univ
  • Donghai Guan College of Automation, Harbin Engineering Univ.

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.