earticle

논문검색

OEOP: A Novel Algorithm for Periodic Pattern Mining

초록

영어

Research on periodic pattern mining has gained a great attention in the past decade.
Periodic pattern mining discovers valid periodic patterns in a time-related dataset. This study
proposed an efficient 2-D linked structure and the OEOP (One Event One Pattern) algorithm
to discover all kinds of valid segments in each single event sequence. Then, this study
combines these valid segments found by OEOP into 1-patterns with multiple events, and
multiple patterns with multiple events periodic patterns. The experimental results show that
the proposed algorithm has good performance and scalability.

목차

Abstract
 1. Introduction
 2. Notations and Definitions
 3. Proposed Data Structures and Algorithms
  3.1. Proposed Process for Periodic Pattern Mining
  3.2. The linked Data Structures
  3.3. OEOP (One Event One Pattern Mining) Algorithm
 4. Experimental Results
  4.1 Datasets
  4.2. Numbers of valid segments and sub-sequences
  4.3. OEOP Results
 5. Conclusions
 Acknowledgements
 References

저자정보

  • Jieh-Shan Yeh Department of Computer Science and Information Management, Providence University
  • Szu-Chen Lin Department of Computer Science and Information Management, Providence University
  • Shueh-Cheng Hu Department of Computer Science and Communication Engineering, Providence University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.