earticle

논문검색

Developed Algorithm for Supervising Identification of Non Linear Systems using Higher Order Statistics: Modeling Internet Traffic

초록

영어

In this work, we use the formulas of statistic techniques for developing an algorithm based on third order moments and autocorrelation function. This algorithm permits to identify non linear system coefficients for recovering the real information from input-output systems. Simulation examples and comparison with other method in the literature are provided to verify the performance of the developed algorithm. The obtained results demonstrate the efficiency and the accuracy of the developed algorithm for non linear system identification under various values of signal to noise ratio (SNR) and different sample sizes N. To corroborate the theoretical results for a real process, we applied the developed algorithm to search a model able to represent the internet traffic data.

목차

Abstract
 1. Introduction
 2. Higher Order Statistics and Non Linear Model
  2.1 Higher Order Statistics
  2.2 Non Linear Model
 3. Developed Algorithm and Simulation
  3.1. Developed Algorithm and Proof
  3.2 Simulation Results
 4. Data Analysis
 5. Identification Model
 6. Diagnostic Checking
 7. Conclusion
 References

저자정보

  • J. Antari Ibn Zohr University, Faculty Polydisciplinary of Taroudant, Department of Computer Engineering, Morocco
  • A. El Khadimi Department of Systems and Communications, National Institute of Posts and Telecommunications (INPT), Rabat, Morocco
  • D. Mammas Ibn Zohr University, EST Agadir, Morocco
  • A. Zeroual Cadi Ayyad University, Faculty of Sciences Semlalia, Team signal processing

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.