earticle

논문검색

An Optimization Technique for Spatial Compound Joins Based on a Topological Relationship Query and Buffering Analysis in DSDBs with Partitioning Fragmentation

초록

영어

Spatial Partitioning Fragmentation (SPF) is a popular method to partition data in Distributed Spatial Databases (DSDBs). The issue of cross-border queries is an inherent problem however with distributed spatial data queries based on partitioning fragmentation given a continuity and strong correlation of geospatial data. In the case of partitioning fragmentation, a global spatial join can be translated into multiple sub-joins, and then divided into 2 groups: Cross-Border Joins (CBJs) and Non-Cross-Border Joins (NCBJs). The CBJ approach is essential for process efficiency in a distributed spatial query. A compound join based on a topological relationship inquiry and a buffering analysis is a crucial class of spatial queries. This article studies compound join optimization for spatial queries in a DSDB, and proposes a set of theorems and rules for the optimization of CBJs, contributing a removal rule and a filtering rule. This article supplies a Partition Fragmentation Join Strategy (PFJS) to resolve the compound join problem based on these rules. Experimental results show that the PFJS can improve the efficiency of CBJs, when compared with the Naive Join Strategy (NJS) or the Spatial Semi-Join Strategy (SSJS). The PFJS contributes to the optimization of spatial compound joins.

목차

Abstract
 1. Introduction
 2. Related Work
 3. The Join Optimization Principle for Compound Queries
  3.1 The Classification of Spatial Topological Relationship Predicates and Spatial Joins
  3.2 The Cross-border Spatial Query Principle Based on Partitioning Fragmentation
  3.3 The Buffer Zone Boundary-restricting Theorem of a Spatial Fragment
  3.4 The Removal Rule for Fragment Joins of a Compound Query
  3.5 The Filtering Rule for Fragment Joins of a Compound Query
  3.6 The Join Optimization Principle for CBJs and its Formalization
 4. Comparison and Analysis of Three Strategies of Compound Queries
  4.1 Naive Join Strategy (NJS)
  4.2 Spatial Semi-Join Strategy (SSJS)
  4.3 The Partition Fragments’ Join Strategy (PFJS)
  4.4 Complexity Analysis of PFJS
 5. Experiments and Analysis
  5.1 Experimental Environment and Dataset
  5.2 Methodology
  5.3 Comparison of Performance in Processing a Compound Query with Partitioning Fragmentation
  5.4 Comparison of Performance in Processing a Compound Query with Mixed Fragmentation
 6. Summary and Future Prospects
 Acknowledgements
 References

저자정보

  • Xinyan Zhu State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan China
  • Chunhui Zhou Navigation School, Wuhan University of Technology, Wuhan China
  • Wei Guo State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan China
  • Di Chen State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan China
  • Kezhong Liu Navigation School, Wuhan University of Technology, Wuhan China

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.