earticle

논문검색

Comparative Study of Techniques in Reducing Inconsistent Data

초록

영어

Increasing number of data is occurs because of high demand from organizations to run their daily business operations. Most of organizations have an information system in order to provide quality information to the organizations. In order to provide the quality information, the information system must be able to filter any dirty from data sources. One of the type dirty data is inconsistent data. Inconsistent data is occurs because of data structured from different data sources are different. Four latest techniques to detect and reduce inconsistent data have been identified. These techniques are rough set, logic analysis of inconsistent data, fuzzy multi attributes decision making and functional dependencies of corresponding relation variable. In this paper, these techniques have been studied described with suitable examples. The purpose of studied is to identify advantages, disadvantages and any potential enhancement in reducing inconsistent data from database.

목차

Abstract
 1. Introduction
 2. Previous Work
  2.1. Rough Set
  2.2. Logic Analysis of Inconsistent Data (LAID)
  2.3. Fuzzy Multi Attribute Decision Making (FMDAM)
  2.4. Functional Dependencies (FD) of Corresponding Relation Variable
 3. Summarize of Current Techniques in Reducing Inconsistent Data
 5. Conclusion and Future Work
 Acknowledgement
 References

저자정보

  • Mohd Kamir Yusof Fakulti Informatik, Universiti Sultan Zainal Abidin Terengganu, Malaysia
  • Atiqah Azlan Fakulti Informatik, Universiti Sultan Zainal Abidin Terengganu, Malaysia

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.