earticle

논문검색

SRCluster: Web Clustering Engine based on Wikipedia

초록

영어

Web clustering engine greatly simplifies the effort of the user from browsing the large set of search results by reorganizing them into smaller clusters. Current web clustering engines result in additional clusters and misses out few relevant, leading to lack of predictability of clustering outputs. Web clustering engines produces inconsistent results as the content of the cluster do not always correspond to its label. In this paper, a new web clustering engine named SRCluster has been proposed to overcome these deficiencies, in specific for the polysemy unigram search keywords. SRCluster identifies the possible categories and its label for the given polysemy keyword based on Wikipedia. The system determines the improved Lesk score (termed, SRLesk score) for each of the category. The search result is clustered to the category with the maximum SRLesk score. The hypertext of the disambiguation Wikipedia page is utilized for labeling the cluster. The experimental result on AMBIENT dataset shows that the inconsistency and the lack of predictability of clustering outputs is being improved using SRCluster.

목차

Abstract
 1. Introduction
 2. Related Works
  2.1 Web Clustering Engines
  2.2 Word Sense Disambiguation
  2.3 Clustering Methodologies with External Knowledge Resource
  2.4 Labeling the Cluster
 3. Overview of Web Clustering Engine
 4. Knowledge Resource of SRCluster
 5. Overlap of Sense Definition
  5.1 Traditional Lesk Approaches
  5.2 SRLesk : Extended Lesk Approach for SRCluster
 6. SRCluster
  6.1 Overview
  6.2 Architecture
  6.3 Result Extractor
  6.4 Result Feature Builder
  6.5 Concept Identifier & Labeller
  6.5 Concept Feature Builder
  6.6 SRLesk Clustering Algorithm
  6.7 Clustered Search Result
 7. Experiments
  7.1 Background Information
  7.2 Experiments and Results
 8. Conclusion
 References

저자정보

  • Yuvarani Meiyappan Lead, Infosys Limited, Bangalore, Karnataka, India
  • N. Ch. S. Narayana Iyengar Senior Professor, School of Computing Science and Engineering, Director, Periar EVR Central Library, VIT University
  • A. Kannan Professor, Department of Information Science and Technology, Anna University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.