earticle

논문검색

An Algorithm for Selecting Clustering Attribute using Significance of Attributes

초록

영어

There are fewer techniques to group objects having similar characteristics deal with categorical data ,but some are of them be complicated in the clustering process while others have stability issues. In this paper we represent a new technique which it be more easier than the other techniques in computing the selecting clustering attribute process and at the same time having stability issues besides taking care of handling uncertainty and categorical data together, we called it (maximum significance of attributes) MSA. The proposed technique based on rough set theory by taking into account the concept of significance of attributes of the database. We analyzing and comparing the performance of MSA technique with (bi-clustering) BC, (total roughness) TR, (minimum-minimum roughness) MMR and (maximum dependency of attribute) MDA techniques.

목차

Abstract
 1. Introduction
 2. The Main Concepts of Important Definitions
 3. Proposed Algorithm
 4. Experimental Part
  4.1. Computational Part
 5. The performance comparisons of MSA with that of BC, TR, MMR and MDA techniques
  5.1. Objects splitting for TR, MMR and MDA techniques
  5.2. The Purity Ratio for TR, MMR and MDA Techniques
  5.3. Objects Splitting for MSA Technique
  5.4. The Purity Ratio for MSA Technique
 6. Conclusions
 Acknowledgement
 References

저자정보

  • W. A. Hassanein Mathematics Department Faculty of science, Tanta University, Tanta, Egypt
  • Amr A. Elmelegy Mathematics Department Faculty of science, Tanta University, Tanta, Egypt

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.