원문정보
An Adaptive Hybrid Filter for WiFi-Based Positioning Systems
초록
영어
As the basic Kalman filter is limited to be used for indoor navigation, and particle filters incur serious computational overhead, especially in mobile devices, we propose an adaptive hybrid filter for WiFi-based indoor positioning systems. The hybrid filter utilizes the same prediction framework of the basic Kalman filter, and it adopts the notion of particle filters only using a small number of particles. Restricting the predicts of a moving object to a small number of particles on a way network and substituting a dynamic weighting scheme for Kalman gain are the key features of the filter. The adaptive hybrid filter showed significantly better accuracy than the basic Kalman filter did, and it showed greatly improved performance in processing time and slightly better accuracy compared with a particle filter.
한국어
기존의 와이파이 기반 측위 시스템에서 주로 사용되는 칼만필터와 파티클 필터는 실내공간의 구조적 특성을 반영하지 못해 정확도가 낮고, 계산 부하 또한 높기 때문에 휴대기기를 이용한 실내 측위에 적용하는데 한계를 지닌다. 이러한 한계를 극복하고자 본 논문은 와이파이 기반 측위 시스템을 위한 적응형 혼합필터를 제안한다. 제안된 필터는 칼만 필터의 일반적인 적용 체계를 활용하였으며, 적은 수의 파티클을 사용한 파티클 필터의 개념 또한 추가되었다. 제안된 필터는 일반 칼만 필터와는 달리 예측 가중치를 동적으로 변화시켜 동작하며, 위치 예측을 위한 파티클을 실내공간의 경로 네트워크상에 한정하는 특징을 지닌다. 검증결과 적응형 혼합 필터는 일반 칼만 필터에 비해 높은 정확도를 보이며, 일반 파티클 필터에 비해서도 정확도 및 계산시간의 측면에서 유의할만한 성능향상을 보였다.
목차
Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. STATE AND PREDICTION MODELS OF AHF
1. State Model
2. Prediction Model
Ⅳ. EXPERIMENTAL RESULTS
1. Experiment Setup
2. Accuracy Results
3. Contribution Results
4. Accuracy of Error Estimation
5. Application
Ⅴ. CONCLUSION
참고문헌
키워드
저자정보
참고문헌
- 1R. KALMAN, "A new approach to linear filteringand prediction problems", ASME DC Journal ofBasic Engineering, vol. 82, no. 1, pp.35-45, Mar,1960.
- 2N. Sheimy, E. Shin, X. Jiniu, "Kalman filterFace-Off: extended vs. unscented Kalman filtersfor integrated GPS and MEMS inertial",InsideGNSS, vol. 1, no. 2, pp.48-54, Mar. 2006.
- 3Y. Chiou, C. Wang, S. Yeh, "An adaptive locationestimator using tracking algorithms for indoorWLANs", ACM Journals on Wireless Networks,vol. 16, no. 7, pp.1987-2012, Oct. 2010.
- 4Extended Kalman Filter Method for Wi-Fi Based Indoor Positioning네이버 원문 이동
- 5A. Doucet, S. Godsill, C. Andrieu, "On sequentialmonte carlo sampling methods for bayesian filtering", ACM Journals on Statistics andComputing, vol. 10, no. 3, pp.197-208, July 2000.
- 6Particle filters for positioning, navigation, and tracking네이버 원문 이동
- 7F. Evennou, F. Marx, “Advanced integration ofWiFi and inertial navigation systems for indoormobile positioning”, EURASIP Journals onApplied Signal Processing, vol. 2006, pp.164-174,Jan. 2006.
- 8A method for dead reckoning parameter correction in pedestrian navigation system네이버 원문 이동
- 9Design of a wireless assisted pedestrian dead reckoning system - the NavMote experience네이버 원문 이동
- 10MonoSLAM: Real-Time Single Camera SLAM네이버 원문 이동
- 11A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements네이버 원문 이동
- 12J. Hightower, G. Borriello, "Particle filters forlocation estimation in ubiquitous computing: ACase Study", in Proc. ACM Int. Conf. UbiquitousComputing 2004 (ACM UbiComp 2004),pp.88-106, Nottingham, UK, Sep. 2004.
- 13RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers네이버 원문 이동
- 14J. Yim, S. Jeong, J. Joo, C. Park, "Utilizing mapinformation for WLAN-based Kalman filterindoor tracking", in Porc. IEEE Int. Conf. FutrueGeneration Communications and networkingSymposia (IEEE FGCNS 2008), pp.58-62. HainanIsland, China, Dec. 2008.
- 15A. Bekkali, H. Sanson, M. Matsumoto, “RFIDindoor positioning based on probabilistic RFIDmap and Kalman filtering”, in Proc. IEEE Int.Conf. Wireless and Mobile Computing,Networking and Communications 2007 (IEEEWiMOB 2007), pp.21-27, White plains, USA, Oct.2007.
- 16H. Lemelson, M. Kjærgaard, R. Hansen, T.King, “Error estimation for indoor 802.11location fingerprinting”, in Proc. ACM Int. Symp.Location and Context Awareness 2009 (ACMLoCA 2009), pp.138-155, Tokyo, Japan, May2009.