원문정보
초록
영어
Biochemical characteristics of 24 Pongamia pinnata genotypes (candidate plus trees) from three agroclimatic zones were estimated and molecular characterization through RAPD markers was done. Various biochemical characters viz. seed oil, total carbohydrates, protein, acid value and Iodine number recorded significant variation among different genotypes. The highest seed oil content was 41.87% while seeds of 14 genotypes recorded above average (32.11%) for the trait. Seed oil and protein content exhibited a significant positive correlation and moderate heritability. Out of the initially selected twenty-five random primers, twenty-two RAPD primers were found to be highly reproducible and produced a total of 183 loci of which 147 (80.32%) loci were polymorphic. Percentage of polymorphism varied from 44% to 100% with an average of 80.62%. High level of genetic variation was found among different genotypes of P. pinnata. Both molecular and oil content (biochemical) markers appeared useful in analyzing the extent of genetic diversity in Pongamia and the result of these analyses will help to better understand the genetic diversity and relationship among populations. Overall, the Pongamia genotypes included in the study showed a correlation with their geographical origins such that genotypes from the same region tend to have higher genetic similarity as compared to those from different regions. However, in UPGMA based Nei’s analysis, some genotypes were found not to be grouped based on geographical origins possibly due to the exchange of germplasm over time between farmers across the regions. The results from oil content analyses showed that several genotypes in ‘Central and Western Plateau’ agroclimatic zone of Jharkhand displayed a good potential for high oil content. The study provides insight about P. pinnata populations in Jharkhand (India) and constitutes a set of useful background information that can be used as a basis for future breeding strategy and improvement of the species.
목차
Introduction
Materials and Methods
Plant material
Biochemical analysis
DNA extraction
RAPD analysis
Data analysis
Results and Discussion
Biochemical characteristics
Molecular characterization
Conclusion
References