earticle

논문검색

Search Query Ranking Using Online User Profile ART1 Classifier and Genetic Algorithm

초록

영어

Today, getting an exact result from the huge raw data on the internet is not an easy task. Utilizing search engines is a good way, but still there is a need for a tool for personalization and having the adaptive capability according to the users’ interests. In this paper, we propose a new algorithm which uses the positive and negative feedback from the user for filtering the information. We will use ART1 classifier to generate the dynamic profile of the users and utilize the genetic algorithm to make the most suitable query to give a better result according to user’s criteria search.

목차

Abstract
 1. Introduction
 2. User Profile Modeling
 3. Adaptive Response Theory Neural networks (ART1)
 4. Information Filtering
 5. Explicit and Implicit Learning
 6. Using Genetic Algorithm For Producing Efficient Queries
 7. Latent Semantic Analysis
 8. Optimized LSA
 9. TF-IDF Vector Representation
 10. Fitness Function
 11. Evaluation Results
 12. Conclusion
 References

저자정보

  • Mahdi Bazarganigilani Charles Sturt University, Australia

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.