earticle

논문검색

Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data

원문정보

초록

영어

We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough( u|∈ W²,p, p>2), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient of the corresponding solution of the Euler equations belongs to certain Orlicz spaces. As a corollary, if the initial vorticity is bounded and small enough, we obtain a sublinear rate of convergence.

목차

Abstract
 1. Introduction
 2. Background
 References

저자정보

  • Namkwon Kim Department of Mathematics, Chosun University, Kwangju, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.