원문정보
초록
영어
When cellular glucose concentrations fall below normal levels, in general the extent of protein O-GlcNAc modification (O-GlcNAcylation) decreases. However, recent reports demonstrated increased O-GlcNAcylation by glucose deprivation in HepG2 and Neuro-2a cells. Here, we report increased O-GlcNAcylation in non-small cell lung carcinoma A549 cells and various other cells in response to glucose deprivation. Although the level of O-GlcNAc transferase was unchanged, the enzyme contained less O-GlcNAc, and its activity was increased. Moreover, O-GlcNAcase activity was reduced. The studied cells contain glycogen, and we show that its degradation in response to glucose deprivation provides a source for UDP-GlcNAc required for increased O-GlcNAcylation under this condition. This required active glycogen phosphorylase and resulted in increased glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting enzyme in the hexosamine biosynthetic pathway. Interestingly, glucose deprivation reduced the amount of phosphofructokinase 1, a regulatory glycolytic enzyme, and blocked ATP synthesis. These findings suggest that glycogen is the source for increased O-GlcNAcylation but not for generating ATP in response to glucose deprivation and that this may be useful for cancer cells to survive.