원문정보
초록
영어
There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.
한국어
소프트웨어의 디버깅에 오류 발생의 시간을 기반으로 하는 많은 소프트웨어 신뢰성 모델이 제안되어 왔다. 무한고 장 모형과 비동질적인 포아송 과정에 의존한 소프트웨어 신뢰성 모형을 이용하면 모수 추정이 가능하다. 소프트웨어를 시장에 인도하는 결정을 내리기 위해서는 조건부 고장률이 중요한 변수가 된다. 유한 고장 모형은 실제 상황에서 다양 한 분야에 사용된다. 특성화 문제, 특이점의 감지, 선형 추정, 시스템의 안정성 연구, 수명을 테스트, 생존 분석, 데이터 압축 및 기타 여러 분야에서의 사용이 점점 많아지고 있다. 통계적 공정 관리 (SPC)는 소프트웨어 고장의 예측을 모니 터링 함으로써 소프트웨어 신뢰성의 향상에 크게 기여 할 수 있다. 컨트롤 차트는 널리 소프트웨어 산업의 소프트웨어 공정 관리에 사용되는 도구이다. 본 논문에서 NHPP에 근원을 둔 로그 포아송 실행시간 모형, 로그선형 모형 그리고 파 레토 모형의 평균값 함수를 이용한 통계적 공정관리 차트를 이용한 제어 메커니즘을 제안하였다.
목차
ABSTRACT
1. 서론
2. 관련 연구
2.1 무한고장 NHPP
2.2 로그 포아송 실행시간모형
2.3 로그-선형 모형
2.4 파레토 모형
2.5 식스 시그마에 의존된 관리 한계
3. 소프트웨어 고장 자료 분석 및 공정관리 분석
4. 결론
참고문헌