earticle

논문검색

디지털 기술

자동차부품 추천을 위한 태스크 온톨로지 기술의 적용방법

원문정보

Application Method of Task Ontology Technology for Recommendation of Automobile Parts

김귀정, 한정수

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This research proposes the method to develop the recommendation system of automobile parts using task ontology technology. The proposed intelligent recommendation system is designed to learn the assembly process of automobile parts and the automobile parts are composed by ontology method for the recommendation of the parts. Using hierarchical taxonomy based on is-a relationship, the relationship between each part that makes up automotive engine was set. Each part has each different weighted value according to the knowledge of automobile experts. The weighted value is created by the number of selection that the users of the automobile recommendation system select while using the system and the final value calculated by the multiplication of the weighted value, which is ​​recorded within the system. As a result, the users can easily identify which factor in which part is important by the output in the order of the priority. The intelligent recommendation system for automobile parts is a system to inform of the assembly, the usage and the importance of automobile parts without any specialized knowledge by expressing the parts that are closely related with the applicable parts when selecting any part on the basis of the generated data for the automobile parts that are difficult to access by users.

한국어

본 연구는 태스크 온톨로지를 이용한 자동차부품 추천시스템 개발 방법을 제안하였다. 제안한 지능형 추천 시스템은 자동차 부품 조립과정을 학습하도록 하였으며, 자동차부품 추천을 위하여 부품들을 온톨로지 방법으로 구축하였다. is-a Relationship 기반 hierarchical Taxonomy를 이용하여 자동차 엔진을 구성하고 있는 각각의 부품들 사이의 관계를 설정하였다. 각각의 부품은 자동차 전문가의 지식에 의해 각기 다른 가중치 값을 가지고 있게 된다. 가중치는 자동차 추천시스템의 사용자들이 직접 사용하면서 선택한 횟수와 가중치의 곱 연산을 이용한 결과 값을 시스템 내에서 기록하여 순서를 작성하고 결과적으로 우선순위(priority)가 높은 순서부터 사용자에게 출력함으로써 어느 부품의 어느 요소가 중요한지 쉽게 파악할 수 있도록 하였다. 자동차부품 지능형 추천시스템은 사용자가 쉽게 접근하기 어려운 자동차 부품관련 부분을 생성된 데이터를 바탕으로 임의의 부품을 선택했을 때 해당 부품과 밀접한 관계를 가진 부품을 표현하여 특별히 전문적인 지식 없이도 손쉽게 자동차 부품의 조립 및 쓰임새와 중요성을 알 수 있게 해주는 시스템이다.

목차

요약
 Abstract
 1. 서론
 2. 연구배경
  2.1 추천시스템
  2.2 태스크 온톨로지
 3. Hierarchical Taxonomy 구조 설계
  3.1 Is-a relationship 기반 Hierarchical Taxonomy
  3.2. 태스크 온톨로지 적용
 4. Hierarchical Taxonomy를 이용한 자동차부품 추천시스템
  4.1 자동차 부품조립 지능형 추천시스템
  4.2 지능형 추천 원리
  4.3 지능형 추천 시나리오
 5. 결론
 참고문헌

저자정보

  • 김귀정 Gui-Jung Kim. 건양대학교 의공학부 교수
  • 한정수 Jung-Soo Han. 백석대학교 정보통신학부 교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.