원문정보
초록
영어
Animal genomics and breeding center works for development of livestock industry through development of breeding technologies based on genomes. Through analysis technology of genomic information with commercialization of DNA chip and development of NGS technique at present, we can select and improve superior breeding stock. DNA chip technique using microarray can analyze millions of SNP genotypes in a short period and we are studying these techniques to make a tool for genomic selection. In the United States, they made a guideline for genomic selection in dairy cattle and this guideline is utilized. In addition Semex company and CRV center use genomic selection for Holstein dairy cattle. Semex says genomic selection reduce two years compared to the existing selection, cost will be shortened 50% and improving speed will be more than 30% accelerated. In Australia, the case of using genomic information has more 10% accuracy than the case of using parent's breeding value without phenotype information. Recently development of NGS technology leads to reduction of analysis costs, increase in analysis data quantity and shorten time of analysis genome. NGS technology is innovative tool in life science. With development of NGS technology, we can expect to increase the efficiency of genomic analysis. Development of NGS technology leads us to expand whole genome study from limited gene study. Human and rodential genome is researched over the past five years, but only recently lots of livestock's genomes like cattle and pig are researched. Also for domestic, studies on livestock genome and genomic information are accomplished but we have a poor infrastructure of genomic analysis. Thus, through the application technology using SNP chip data and NGS, new breeding technology is very important for prior occupation. Animal genomics and breeding center has four strategies and these are divided by application technology. 1. Development of animal breeding and statistical genetics based on genomic information. 2. Development of genomic analysis and application technology through analysis of genetic diversity and structure. 3. Registration of traditional breeds and securing intellectual property rights based on the genome of the unique genetic resources. 4. Development of technologies for improvement of disease resistance and economic traits.