earticle

논문검색

MacCormack 방법의 개량에 대한 연구

원문정보

Some Modifications of MacCormark's Methods

하영수, 유승재

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

MacCormack's method is an explicit, second order finite difference scheme that is widely used in the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy violations under small discontinuity. This non-physical shock grows fast and eventually all the meaningful information of the solution disappears. Some modifications of MacCormack's methods follow ideas of central schemes with an advantage of second order accuracy for space and conserve the high order accuracy for time step also. Numerical results are shown to perform well for the one-dimensional Burgers' equation and Euler equations gas dynamic.

한국어

MacCormack 방법은 hyperbolic 편미분 방정식의 근을 구하는데 많이 쓰이는 방법으로 그 정확도가 2차 오더가 된다. 하지만 이 방법으로 편미분방정식을 풀 경우 불연속인 점에서는 엔트로피를 만족하지 않는 경우가 있어 우리는 임의의 항을 첨가하여 근을 구해야한다. 이 임의의 항을 첨가하지 않고 직접 방정식으로부터 구하는 방법을 생각하는데 있어서 기존의 MacCormack 방법에 새 central scheme의 개념을 이용하면 전형적인 MacCormack 방법의 정확도와 장점을 보존할 수 있다. 이 새로운 방법을 이용하여 1D Burgers' 방정식과 1D Euler gas dynamic 방정식에 활용하여 그 결과를 살펴본다.

목차

요약
 ABSTRACT
 1. Introduction
 2. Modifications of MacCormack’s method
 3. Numerical results
 4. Conclusions
 References

저자정보

  • 하영수 Youngsoo Ha. KIAST 응용수학
  • 유승재 Seung Jae Yoo. 중부대학교 정보보호학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.