earticle

논문검색

Recursive Identification of Piecewise-affine Systems based on Parameter Space Decomposition Theorem

원문정보

초록

영어

The class of Basis Function Piecewise-affine (BPWA) functions is an ideal model structure for nonlinear and hybrid system identification. This paper proposes a parameter space decomposition theorem for BPWA functions. It is proved that any BPWA function has a decomposed parametric representation, in which the algebraic and geometrical parameters can be identified separately. Under the assumption of invariant geometrical structure, a recursive algorithm is proposed to identify the BWPA AutoRegressive Exogenous models from the input-output data. Two benchmark examples are illustrated to show that the proposed algorithm has much higher computational efficiency compared with the competing algorithms with the same identification accuracy.

목차

Abstract
 1. Introduction
 2. BPWA Functions
  2.1 BPWA Basis Function
  2.2 BPWA Approximation Theorem
 3. Parameter Space Decomposition Theory of BPWA Functions
 4. Recursive Identification of PWA Systems
  4.1 BPWARX Model [17]
  4.2 Change of Regression Vector
  4.3 Recursive Identification Algorithm
 5. Numerical Examples
 5. Conclusions
 References

저자정보

  • Rui Huang System Department, United Technologies Research Center, East Hartford, CT, USA
  • Weiquan Sun School of Business Administration, Duquesne University, Pittsburgh, PA, USA
  • Min Li Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.