earticle

논문검색

개인화된 추천시스템을 위한 사용자-상품 매트릭스 축약기법

원문정보

User-Item Matrix Reduction Technique for Personalized Recommender Systems

김경재, 안현철

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Collaborative filtering(CF) has been a very successful approach for building recommender system, but its widespread use has exposed to some well-known problems including sparsity and scalability problems. In order to mitigate these problems, we propose two novel models for improving the typical CF algorithm, whose names are ISCF(Item-Selected CF) and USCF(User-Selected CF). The modified models of the conventional CF method that condense the original dataset by reducing a dimension of items or users in the user-item matrix may improve the prediction accuracy as well as the efficiency of the conventional CF algorithm. As a tool to optimize the reduction of a user-item matrix, our study proposes genetic algorithms. We believe that our approach may relieve the sparsity and scalability problems. To validate the applicability of ISCF and USCF, we applied them to the MovieLens dataset. Experimental results showed that both the efficiency and the accuracy were enhanced in our proposed models.

목차

Abstract
 1. 서론
 2. 연구 배경
  2.1 기존 추천 기법의 한계점
  2.2 차원축소 관련연구
 3. 유전자 알고리즘 기반의 협동필터링 차원축소 모형
 4. 실험 설계
  4.1 실험데이터 : MovieLens 데이터셋
  4.2 실험 설계
 5. 실험 결과
 6. 결언
 참고문헌

저자정보

  • 김경재 Kyoung-jae Kim. 동국대학교 경영대학 경영정보학과 부교수
  • 안현철 Hyunchul Ahn. 국민대학교 경상대학 비즈니스IT학부 전임강사

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 5,100원

      0개의 논문이 장바구니에 담겼습니다.