earticle

논문검색

Wi-Fi 기반 옥내측위를 위한 확장칼만필터 방법

원문정보

Extended Kalman Filter Method for Wi-Fi Based Indoor Positioning

임재걸, 박찬식, 주재훈, 정승환

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The purpose of this paper is introducing WiFi based EKF(Extended Kalman Filter) method for indoor positioning. The advantages of our EKF method include:1) Any special equipment dedicated for positioning is not required. 2) Implementation of EKF does not require off-line phase of fingerprinting methods. 3) The EKF effectively minimizes squared deviation of the trilateration method. In order to experimentally prove the advantages of our method, we implemented indoor positioning systems making use of the K-NN(K Nearest Neighbors), Bayesian, decision tree, trilateration, and our EKF methods. Our experimental results show that the average-errors of K-NN, Bayesian and decision tree methods are all close to 2.4 meters whereas the average errors of trilateration and EKF are 4.07 meters and 3.528 meters, respectively. That is, the accuracy of our EKF is a bit inferior to those of fingerprinting methods. Even so, our EKF is accurate enough to be used for practical indoor LBS systems. Moreover, our EKF is easier to implement than fingerprinting methods because it does not require off-line phase.

목차

Abstract
 1. 서론
 2. 기존의 연구
  2.1 K-NN 방법
  2.2 베이시안 방법
  2.3 의사결정나무 방법
  2.4 삼각측량기법
  2.5 확장칼만필터
 3. 제안방법 -Wi-Fi 흔병에서 확장칼만필터 알고리즘
 4. 실험
 5. 결론
 참고문헌

저자정보

  • 임재걸 Jaegeol Yim. 동국대학교 컴퓨터멀티미디어학과 교수, 연구원
  • 박찬식 Chansik Park. 충북대학교 전기전자컴퓨터공학부 교수
  • 주재훈 Jaehun Joo. 동국대학교 경상학부 교수
  • 정승환 Seunghwan Jeong. 동국대학교 컴퓨터멀티미디어학과 교수, 연구원

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,800원

      0개의 논문이 장바구니에 담겼습니다.