earticle

논문검색

Comparing Feature Selection Methods in Spam Mail Filtering

초록

영어

In this work, we compared several feature selection methods in the field of spam mail filtering. The proposed fuzzy inference method outperforms information gain and chi squared test methods as a feature selection method in terms of error rate. In the case of junk mails, since the mail body has little text information, it provides insufficient hints to distinguish spam mails from legitimate ones. To address this problem, we follow hyperlinks contained in the email body, fetch contents of a remote web page, and extract hints from both original email body and fetched web pages. A two-phase approach is applied to filter spam mails in which definite hint is used first, and then less definite textual information is used. In our experiment, the proposed two-phase method achieved an improvement of recall by 32.4% on the average over the phase or the phase only works.

목차

Abstract
 1. Introduction
 2. Feature Selection in Training Phase
 3. Experiments
 4. Conclusion
 References

저자정보

  • Kim, Jong-Wan School of Computer and Information Technology, Daegu University
  • Kang, Sin-Jae School of Computer and Information Technology, Daegu University)

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.