earticle

논문검색

경매 시스템에서 시계열 분석에 기반한 낙찰 예정가 추천 방법

원문정보

Reserve Price Recommendation Methods for Auction Systems Based on Time Series Analysis

고민정, 이용규

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

It is very important that sellers provide reasonable reserve prices for auction items in internet auction systems. Recently, an agent has been proposed to generate reserve prices automatically based on the case similarity of information retrieval theory and the moving average of time series analysis. However, one problem of the previous approaches is that the recent trend of auction prices is not well reflected on the generated reserve prices, because it simply provides the bid price of the most similar item or an average price of some similar items using the past auction data. In this paper, in order to overcome the problem, we propose a method that generates reserve prices based on the moving average, the exponential smoothing, and the least square of time series analysis. Through performance experiments, we show that the successful bid rate of the new method can be increased by preventing sellers from making unreasonable reserve prices compared with the previous methods.

목차

Abstract
 1. 서론
 2. 관련 연구
  2.1 경매 물품의 낙찰 예정가 결정법
  2.2 시계열 분석
 3. 낙찰 예정가 추천 방법
  3.1 낙찰 예정가 추천 절차
  3.2 시계열 분석에 의한 낙찰 예정 추천 방법
 4. 성능 실험
  4.1 성능 실험 환경
  4.2 실험 결과
 5. 결론 및 향후 연구
 참고문헌

저자정보

  • 고민정 Min Jung Ko. 동국대학교 컴퓨터공학과 박사과정
  • 이용규 Yong Kyu Lee. 동국대학교 컴퓨터멀티미디어공학과 교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,800원

      0개의 논문이 장바구니에 담겼습니다.