원문정보
Object Retrieval Using the Corners Area Variability Based on Correlogram
초록
영어
This paper have proposed an object retrieval using the corners area variability based on correlogram. The proposed algorithm is processed as follows. First, the corner points of the object in an image are extracted and then the feature vectors are obtained. It are rearranged according to the number dimension and consist of sequence vectors. And the similarity based on the maximum of sequence vectors is measured. The proposed technique is invariant to the rotation or the transfer of the objects and more efficient in case that the objects present simple structure. In simulation that use Wang's database, the method presents that the recall property is improved by 0.03% and more than the standard corner patch histogram.
한국어
본 연구에서는 객체 코너의 분산치에 기반한 코렐로그램 형태검출 기법을 제안한다. 제안된 알고리즘은 다음 단계로 진행된다. 먼저 영상 내 객체의 코너 점을 추출한 후 이들의 분산치를 구한다. 그리고 각각의 코너영역들의 분산치 중 최대/최소값을 추출한다. 그리고 이 최대/최소값을 이용하여 코렐로그램 매핑을 한 후 유사도를 측정하게 된다. 제안된 기법은 영상 내에서 형태 구조가 분명한 객체의 실험에서 성능이 우수하였으며 객체의 이동이나 회전에도 강인하였으며 코너 패치 히스토그램을 이용한 형태 검색에 비해 약 0.03%의 향상된 recall을 나타내었다.
목차
Abstract
I. 서론
II. 콘텐츠 기반 영상검색
III. 코너영역 분산치 기반 코렐로그램 형태검출 알고리즘 설계
IV. 시험 및 분석
V. 결론
참고문헌