earticle

논문검색

Session 6 : HUMAN BRAND, 좌장 : 양광모(유한대학)

데이터마이닝 기법을 이용한 전공이탈자 분류를 위한 성능평가

원문정보

Evaluation on Performance for Classification of Students Leaving Their Majors Using Data Mining Technique

임영문, 유창현

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Recently most universities are suffering from students leaving their majors. In order to make a countermeasure for reducing major separation rate, many universities are trying to find a proper solution. As a similar endeavor, this paper uses decision tree algorithm which is one of the data mining techniques which conduct grouping or prediction into several sub-groups from interested groups. This technique can analyze a feature of type on students leaving their majors. The dataset consists of 5,115 features through data selection from total data of 13,346 collected from a university in Kangwon-Do during seven years(2000.3.1 2006.6.30). The main objective of this study is to evaluate performance of algorithms including CHAID, CART and C4.5 for classification of students leaving their majors with ROC Chart, Lift Chart and Gains Chart. Also, this study provides values about accuracy, sensitivity, specificity using classification table. According to the analysis result, CART showed the best performance for classification of students leaving their majors.

목차

Abstract
 1. 서론
 2. 연구내용 및 방법
 3. 분석결과
  3.1 변수선택
  3.2 모델별 결과 비교
 4. 결론 및 추후연구사항
 5. 참고문헌

저자정보

  • 임영문 Leem Young Moon. 강릉대학교 산업공학과 교수
  • 유창현 Ryu Chang Hyun. 강릉대학교 산업공학과 석사과정

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.