earticle

논문검색

응용논문(1)

순회 판매원 문제를 위한 하이브리드 병렬 유전자 알고리즘

원문정보

Hybrid Parallel Genetic Algorithm for Traveling Salesman Problem

김기태, 전건욱

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어


Traveling salesman problem is to minimize the total cost for a traveling salesman who wants to make a tour given finite number of cities along with the cost of travel between each pair them, visiting each cities exactly once before returning home. Traveling salesman problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study suggests a hybrid parallel genetic algorithm(HPGA) for traveling salesman problem. The suggested algorithm combines parallel genetic algorithm, nearest neighbor search, and 2-opt. The suggested algorithm has been tested on 7 problems in TSPLIB and compared the results of existing methods(heuristics, meta-heuristics, hybrid, and parallel). Experimental results shows that HPGA could obtain good solution in total travel distance minimization.

목차

Abstract
 1. 서론
 2. 순회 판매원 문제
 3. 하이브리드 병렬 유전자 알고리즘
  3.1 유전자 표현
  3.2 모집단
  3.3 적합도 평가
  3.4 선별
  3.5 유전 연산자
  3.6 이주
  3.7 유전 및 이주 파라미터
  3.8 해 개선
 4. 실험 및 결과 분석
 5. 결론
 6. 참고문헌

저자정보

  • 김기태 Ki-Tae Kim. 국방대학교 운영분석학과
  • 전건욱 Geon-Wook Jeon. 국방대학교 운영분석학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.