earticle

논문검색

분산 유전알고리즘의 TSP 적용

원문정보

Distributed Genetic Algorithms for the TSP

박유석

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Parallel Genetic Algorithms partition the whole population into several sub-populations and search the optimal solution by exchanging the information each others periodically. Distributed Genetic Algorithm, one of Parallel Genetic Algorithms, divides a large population into several sub-populations and executes the traditional Genetic Algorithm on each sub-population independently. And periodically promising individuals selected from sub-populations are migrated by following the migration interval and migration rate to different sub-populations. In this paper, for the Travelling Salesman Problems, we analyze and compare with Distributed Genetic Algorithms using different Genetic Algorithms and using same Genetic Algorithms on each separated sub-population The simulation result shows that using different Genetic Algorithms obtains better results than using same Genetic Algorithms in Distributed Genetic Algorithms. This results look like the property of rapidly searching the approximated optima and keeping the variety of solution make interaction in different Genetic Algorithms.

목차

Abstract
 1. 서론
 2. 이론적 고찰
  2.1 순회 판매원문제 (Traveling Salesman Problem)
  2.2 분산 유전알고리즘
  2.3 CoPDEB(Co-operating population with different evolution behaivours)
  2.4 염색체 표현
  2.4 교차연산자 : OX연산자와 GSX 연산자
  2.5 돌연변이 연산자 : 역치 연산자와 확률적 연산자
 3. 실험 결과 및 분석
 4. 결론
 5. 참고문헌

저자정보

  • 박유석 Park Yu Suk. 명지대학교 산업공학과 박사과정 수료

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.