earticle

논문검색

Steganalysis of YASS Using Huffman Length Statistics

초록

영어

This work proposes two main contributions to statistical steganalysis of Yet Another Steganographic Scheme (YASS) in JPEG images. Firstly, this work presents a reliable blind steganalysis technique to predict YASS which is one of recent and least statistically detectable embedding scheme using only five features, four Huffman length statistics (H) and the ratio of file size to resolution (FR Index). Secondly these features are shown to be unique, accurate and monotonic over a wide range of settings for YASS and several supervised classifiers with the accuracy of prediction superior to most blind steganalyzers in vogue. Overall, the proposed model having Huffman Length Statistics as its linchpin predicts YASS with an average accuracy of over 94 percent.

목차

Abstract
 1. Introduction
 2. Related Works
 3. YASS – Yet Another Steganographic Scheme
 4. Feature Extraction – Huffman Length Statistics and FR Index
  4.1. Huffman Length Statistics
  4.2. FR Index: Ratio of File Size to Resolution of an Image
 5. Image Database
  5.1 Exploratory Data Analysis of the Image Database
  5.2 Hypotheses Testing in Attempt to Predict the Big Block Size Used.
 6. Implementation
  6.1. Model
  6.2. Classification
 7. Results and Performance Analyses
  7.1. Comparison of the Proposed Model Against Blind Steganalyzers Tested in YASS [6]
  7.2. Comparison of Our Proposed Model Against Blind Steganalyzers Used in EYASS [7].
  7.3. Comparison of Our Proposed Model Against Steganalytic Feature Sets Tested in [5].
  7.4. Comparison of Our Proposed Model Against Steganalytic Feature Sets Tested in [8].
 8. Conclusions and Future Work
 References

저자정보

  • Veena H Bhat Department of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore, India, IBS-Bangalore, Bangalore, India.
  • Krishna S Department of Electronics and Communication Engineering, University Visvesvaraya College of Engineering, Bangalore, India
  • P Deepa Shenoy Department of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore, India
  • Venugopal K R Department of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore, India
  • L M Patnaik Vice Chancellor, Defence Institute of Advanced Technology, Pune, India

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.