earticle

논문검색

Comparison of Techniques in Solving Incomplete Datasets in Softset

초록

영어

The theory of soft set proposed by Molodtsov in 1999 is a new method for handling uncertain data and can be redefined as a Boolean-valued information system. The soft set theory has been applied to data analysis and decision support systems based on large data sets. Using retrieved datasets, we will be comparing two techniques in solving incomplete datasets : parity bits of supported set; and the aggregate and calculated support values. It is demonstrated in this paper that the technique using aggregate values and calculated support values performs better in the process of identifying missing values in incomplete datasets.

목차

Abstract
 1. Introduction
 2. Preliminaries
  2.1 Information System
  2.2 Soft Set Theory
  2.3 Supported Sets
  2.4 Parity Bits
  2.5 Attribute Aggregate Values
  2.6 Diagonal Aggregate Values
 3. Analysis of Techniques
  3.1. Analysis of attribute reduction of soft set in Mohd Rose A. N. et al. [8]
  3.2. Analysis of attribute reduction of soft set in Mohd Rose A. N. et al. [9]
 4. Conclusion
 References

저자정보

  • Ahmad Nazari Mohd. Rose FIT, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  • Mohd Isa Awang FIT, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  • Hasni Hassan FIT, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  • Mustafa Mat Deris FTMM, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.