earticle

논문검색

Gradient Descent Feed Forward Neural Networks for Forecasting the Trajectories

초록

영어

The paper demonstrates the forecasting of an aircraft trajectory in the vertical plane using gradient descent method for training a feed forward neural network system. For prediction of trajectory a neural networks system has been trained using a set of some arbitrary trajectories and then used to forecast for the new ones. Sliding Window method is being used for predictions, which is able to consider real points during flight to improve the precision in prediction. The results show that neural network can successfully be applied for such predictions

목차

Abstract
 1. Introduction
 2. Gradient Descent Learning Algorithm of Feed Forward Neural Networks
  I. Initialize Weights and Offsets
  II. Present Input and Desired Output Vector
  III. Calculate Actual Outputs
  IV. Adapt weights
  V. Repeat by Going to Step 2
 3. Prediction of Aircraft Trajectory using Feed Forward neural networks
 4. Conclusion
 References

저자정보

  • Anurag Sharma Department of Computer Science, Singhania University, Chittorgrah, Rajsthan, India
  • Ashish Chaturvedi Department of Applied Sciences, Gyan Bharti Institute of Technology, Meerut, UP, India

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.