earticle

논문검색

Integral Images Compression using Discrete Wavelets and PCA

초록

영어

A technique for integral image compression is presented. The proposed technique relies on applying principle component analysis, PCA, on the wavelet coefficients of the elemental images to improve the quality of the recovered 3D image while achieving high compression ratio. The wavelet coefficients of the individual elemental images are stacked and rearranged before applying PCA compression. The PCA compression is applied to each sub-band individually to enhance the compression ratio. The quality of the reconstructed 3D images and received elemental images are calculated. Results show high compression ratio compared to PCA alone compression while maintaining the recovered 3D image quality. PSNR is used to measure the reconstructed 3D image quality.

목차

Abstract
 1. Introduction
 2. Integral Imaging
 3. Discrete Wavelet Transform
 4. Principle Component Analysis
 5. The Proposed DWT-PCA II Compression Algorithm
  5.1. Steps of the algorithm
  5.2. Mathematical Analysis
  5.3. Metric of Measure:
  5.4. The Proposed Algorithm can be Summarized as Follows:
 6. Experimental Results
 7. Conclusion
 References

저자정보

  • Sherin Kishk Assistant Lecture National Telecommunications Institute, NTI
  • Hosam Eldin Mahmoud Ahmed Assistant Prof. Department of Computer Engineering Banha University
  • Hala Helmy Associate Prof. Department of Communication Engineering Banha University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.