earticle

논문검색

Cyber Security Threats Detection Using Ensemble Architecture

원문정보

초록

영어

This paper describes an ensemble design for cyber security threats detection, which fuses the results from multiple classifiers together to make a final assessment decision. For promoting both speed and accuracy in the detection performance, only some of the features in traffic data are selected for each base classifier. In the kernel of each classifier, we combine Dempster-Shafer theory with k-nearest neighbor technique to solve the uncertainty problems caused by ambiguous and limited intrusion information. In addition, we apply data mining techniques to reduce the number of false alarms. The results indicate that our ensemble approach achieves higher detection rates than that of using a full feature set of classifiers.

목차

Abstract
 1. Introduction
 2. Related Works
 3. Theoretical Framework
  3.1 Ensemble Classifier
  3.2 k-NN Belief Intrusion Detection Algorithm
  3.3 Combination Method
  3.4 Data Mining Classifier
 4. Experimental Methodology
  4.1. The Data Set
  4.2. Preprocessing
  4.3. Data Selection
 5. Experimental Results
 6. Conclusions
 References

저자정보

  • Te-Shun Chou Department of Technology Systems, East Carolina University Greenville

참고문헌

자료제공 : 네이버학술정보

    ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

    0개의 논문이 장바구니에 담겼습니다.