earticle

논문검색

Rough Set Models on Granular Structures and Rule Induction

초록

영어

This paper focuses on generalization of rough set model and rule induction. First a extension of rough set approximations is established on general granular structure, so that the rough set models on some special granular structures are meaningful. The new rough approximation operators are interpreted by topological terminology well. Conversely, by means of the new rough approximation operators, many special granular structures, such as, covering, knowledge space, topology space and Pawlak approximation space, are characterized. Furthermore, using new approximation operators, two types of decision rules can be induced.

목차

Abstract
 1. Introduction
 2. Preliminaries
  2.1. Set systems and set operators
  2.2. Coverings
  2.3. Closure systems and closure operators
  2.4. Topologies and interior operators
  2.5. Partitions
 3. Rough set model based on granular structure
  3.1 Pawlak rough sets
  3.2 Rough set approximations on granular structure
 4 Approximation operator characterizations of granular structures
 5 Rule induction
 6 Conclusions
 References

저자정보

  • Tong-Jun Li School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan
  • Yan-Ling Jing Library, Zhejiang Ocean University, Zhoushan

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.