earticle

논문검색

Visualization and the understanding of multidimensional data using Genetic Algorithms : Case study of load patterns of electricity customers

초록

영어

Visualization is the process of transforming data, information, and knowledge into visual form, making use of humans’ natural visual capabilities. Different methodologies are available for analyzing large multidimensional data sets and providing insights with respect to scientific, economic, and engineering applications. This problem has traditionally been formulated as a non-linear mathematical programming. In this paper, we formulate the data visualization problem as a quadratic assignment problem. However, this formulation is computationally difficult to solve optimally using an exact approach. Consequently, we investigate the use of the genetic algorithm for the data visualization problem. To examine capabilities of proposed method, we use a demand database by electricity customers, and compare the results with results by Self Organizing Maps (SOMs). This can be concluded that this approach generates higher quality output.

목차

Abstract
 1. Introduction
 2. Literaturereview
  2.1. Using linear equation to estimate nonlinear equation
  2.2. Sammon’s Mapping (SM)
  2.3.Multi-Dimensional Scaling (MDS)
  2.4. Self-OrganizingMaps (SOM)
  2.5. Discrete optimization
 3. Modeling
 4. Genetic algorithm
  4.1. Chromosome representation and decoding
  4.2. Selection
  4.3. Crossover
  4.4. Mutation
 5. Case study
  5.1. Visualization by using SOM
  5.2. Visualization by using Genetic algorithm
 6. Customer patterns classification
 7. Conclusions
 References

저자정보

  • VahidGolmah Department of Computer Engineering, Azad University of Neyshabur
  • Jamshid Parvizian Isfahan University of Technology

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.