earticle

논문검색

Unsupervised classification using evolutionary strategies approach and the Xie and Beni criterion

초록

영어

The kmeans algorithm is an unsupervised classification algorithm. It has some drawbacks, the number of classes has to be known a priori, the initialization phase and the local optimums. We present in this paper an improvement based on evolutionary strategies and on the Xie and Beni criterion in order to get around these three difficulties. We design a new evolutionist kmeans algorithm. We suggest a new mutation operator that allows the algorithm to avoid local solutions and to converge to the global solution in a small computation time. We have optimized the Xie and Beni criterion by evolutionary strategies for the optimal choice of the number of classes. The proposed method is validated on several simulation examples. The experimental results obtained show the rapid convergence and the good performances of this new approach.

목차

Abstract
 1. Introduction
 2. Evolutionary strategies
 3. kmeans classification
  3.1. Descriptive elements
  3.2. kmeans algorithm
 4. Evolutionary kmeans classification
  4.1. Proposed coding
  4.2. The proposed fitness function
  4.3. The proposed mutation operator
  4.4. The proposed EKM algorithm
 5. Determination of the optimal number of classes
  5.1. Xie and Beni criterion
  5.2 Optimization of Xie and Beni criterion by evolutionary strategies
 6. Experimental results and evaluations
  6.1. Introduction
  6.2. Test 1
  6.3. Test 2
  6.4. Test 3
  6.5. Test 4
  6.6. Estimation of the optimal number of classes
 7. Conclusion
 8. References

저자정보

  • M. Merzougui LABO MATSI, EST, University of Mohammed
  • A. EL Allaoui LABO MATSI, EST, University of Mohammed
  • M. Nasri, M. EL Hitmy LABO MATSI, EST, University of Mohammed
  • H. Ouariachi LABO MATSI, EST, University of Mohammed

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.