earticle

논문검색

An Efficient Approach for Clustering Web Access Patterns from Web Logs

초록

영어

The interests of web users can be revealed by their visited web pages and time duration on these web pages during their surfing. Time duration on a web page is characterized as a fuzzy
linguistic variable because linguistic variable makes users easily understand the expression of time duration and can disregard subtle difference between two time durations. Each web access pattern from web logs is transformed as corresponding fuzzy web access pattern, which is a fuzzy vector composed of fuzzy linguistic variables or 0. Each element in fuzzy web access patterns represents visited web page and time duration on this web page. This paper proposed a rough k-means clustering algorithm based on properties of rough variable to group the gained fuzzy web access patterns. Finally, an example and experiment is provided to illustrate the clustering process. Using this approach, users can effectively mine web logs records to discover interesting user access patterns.

목차

Abstract
 1. Introduction
 2. Reviewal of fuzzy variable and rough variable
  2.1. Fuzzy variable
  2.2. Rough variable
 3. Clustering web access patterns by rough k-means method in fuzzy environment
  3.1. Characterizing user access patterns as fuzzy user access patterns
  3.2. Algorithm for clustering fuzzy web access patterns based on rough k-means
 4. An example
 5. An experiment
 6. Conclusion
 References

저자정보

  • Peilin Shi Department of Mathematics, Taiyuan University of Technology Taiyuan

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.