원문정보
극저준위 방사성폐기물의 방사성핵종 분포유형에 기초하여 자체처분기준 만족여부를 판단하기 위한 통계학적 접근방법
초록
영어
A statistical evaluation methodology was developed to determine the compliance of candidate waste stream with clearance criteria based upon distribution of radionuclide in a waste stream at a certain confidence level. For the cases where any information on the radionuclide distribution is not available, the relation between arithmetic mean of radioactivity concentration and its acceptable maximum standard deviation was demonstrated by applying widely-known Markov Inequality and One-side Chebyshev Inequality. The relations between arithmetic mean and its acceptable maximum standard deviation were newly derived for normally or lognormally distributed radionuclide in a waste stream, using probability density function, cumulative density function, and other statistical relations. The evaluation methodology was tested for a representative case at 95% of confidence level and 100 Bq/g of clearance level of radioactivity concentration, and then the acceptable range of standard deviation at a given arithmetic mean was quantitatively shown and compared, by varying the type of radionuclide distribution. Furthermore, it was statistically demonstrated that the allowable range of clearance can be expanded, even at the same confidence level, if information on the radionuclide distribution is available.
한국어
방사성핵종의 분포유형에 관한 정보에 기초하여 극저준위폐기물의 자체처분 적합성을 통계학적으로 해석할 수 있는 방법론을 개발하였다. 방사성핵종의 분포에 관한 정보를 알 수 없는 경우에 대해서는 널리 알려진 마코프 부등식과 체비셰프 부등식을 적용하여 방사능농도의 산술평균과 허용되는 최대 표준편차의 상관관계식을 제시하였고, 방사성핵종의 농도가 정규분포 또는 로그정규분포를 갖는 경우에 대해서는 확률밀도함수, 누적확률밀도함수 등의 통계학적 관계식을 이용하여 방사능농도의 산술평균과 허용되는 최대 표준편차의 상관관계식을 새롭게 유도하였다. 또한, 자체처분기준 100 Bq/g 및 신뢰수준 95%인 조건에 대한 사례 적용연구를 통하여 방사능농도의 산술평균과 허용되는 표준편차의 범위를 방사성핵종의 분 포유형에 따라 정량적으로 비교·제시하고, 자체처분 대상 폐기물의 방사성핵종 분포유형에 관한 정보가 확보될 경우 동일한 신뢰수준에서 자체처분이 허용될 수 있는 범위가 확장될 수 있음을 통계학적으로 입증하였다.
목차
요약
I. 서론
II. 방사능농도 상한치에 대한 통계학적 추정방법
가. 시료채취 및 방사능계측의 통계학적 개념화
나.방사성핵종의 분포를 알 수 없는 경우의 통계학적 추정방법
다. 방사성핵종의 분포를 알고 있는 경우의 통계학적 추정방법
III. 결과 및 논의
가. 방사성핵종의 분포를 추정할 수 없고 평균값을 아는 경우
나. 방사성핵종의 분포를 추정할 수 없고 평균값과 분산을 아는 경우
다. 방사성핵종의 분포가 정규분포를 따르는 경우
라. 방사성핵종의 분포가 로그정규분포를 따르는 경우
마. 평가결과의 비교
IV. 결론
참고문헌