earticle

논문검색

An improved g-centroid location algorithm for Ptolemaic graphs

초록

영어

We have presented an 2()Om time algorithm for locating the g-centroid for Ptolemaic graphs, where n is the number of edges and m is the number of vertices of the graph under consideration [6]. If the graph is sparse (i.e. =()mOn) then the algorithm presented will output the g-centroid in quadratic time. However, for several practical applications, the graph under consideration will be dense (i.e. 2()mOn) and the algorithm presented will output g-centroid in 4()On time. In this paper, we present an efficient 3()On time algorithm to locate the g-centroid for dense Ptolemaic graphs.

목차

Abstract
 1. Introduction
 2. Preliminary results
 3. Main Results
 4. Conclusion and Future Direction
 References

저자정보

  • Prakash Veeraraghavan Department of Computer Science and Computer Engineering La Trobe University, 3086, Victoria, Australia

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.