earticle

논문검색

The Error Bound of User for Collaborative Recommender System

초록

영어

We predict accuracy of user’s preferences by using memory-based collaborative filtering algorithm in recommender system, and then analyze the results through the EDA approach. The possibilities are presented that prediction accuracy can be evaluated before prediction process by analyzing the results. The classification functions using the generative probability of specific ratings are made, and users are classified by using the classification functions. The prediction accuracies of each classified group are analyzed through statistical tests. The method of setting the Error Bound of users who have high probabilities in low prediction accuracy will be presented.

목차

Abstract
 1. Introduction
 2. Recommender system
  2.1. Collaborative filtering
  2.2. Neighbor selection
  2.3. Similarity weight
 3. Algorithm
  3.1. NBCFA
  3.2. Evaluation Metric
 4. Pre-evaluation
 5. Methodology
  5.1. Experimental dataset
  5.2. Error fence
  5.3. Experiment steps
 6. Experiment and results
  6.1. Relationship between MAE and SD
  6.2. Relationship between MAE and classification functions
  6.3. Relationship between classification functions and SD
  6.4. Relationship between MAE and ‘and’ condition
  6.5. Relationship between MAE and ‘or’ condition
 7. Conclusions
 8. References

저자정보

  • Uk-Pyo Han Department of Computer Science, Kangwon National University, Korea
  • Gil-Mo Yang School of Computer IT Engineering, Kangnung National University, Korea
  • Jae-Soo Yoo School of Electrical & Computer Engineering, Chungbuk National University, Korea
  • Young-Jun Chung Department of Computer Science, Kangwon National University, Korea
  • Hee-Choon Lee Department of Computer Data Information, sangji University, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.