초록 열기/닫기 버튼

A precision tribometer consisting of a cantilever was designed to measure frictional forces in the micro-Newton range. As frictional forces are measured based on the bending of the cantilever, vibration of the cantilever is the most significant factor affecting the quality of the friction measurement. Therefore, improved design of the tribometer with double cantilevers and a connecting plate that united the two cantilevers mechanically was suggested. For the verification of the modified design of the tribometer, numerical analysis and experiments were conducted. Examination using the finite element method revealed that the tribometer with a double cantilever and a connecting plate exhibited faster damping characteristics than the tribometer with a single cantilever. In the experiment, effectiveness of the double cantilever and connecting plate for vibration reduction was also confirmed. Vibration of the tribometer with double cantilever decreased eight times faster than that of the tribometer with a single cantilever. The faster damping of the double cantilever design is attributed to the mechanical interaction at the contacting surfaces between the cantilever and the connecting plate. Tribotesting using the tribometer with a single cantilever resulted in random fluctuation of frictional forces due to the stickslip behavior. However, using the tribometer with a double cantilever and connecting plate for the tribotest gave relatively uniform and steady measurement of frictional forces. Increased stiffness owing to using a double cantilever and mechanical damping of the connecting plate were responsible for the stable friction signal.