초록 열기/닫기 버튼


The characteristics of a tilt sensor utilizing the resistance change of an electrolyte associated with inclination is investigated, and a dynamic compensation modeling is proposed to make the real-time measurement of the absolute slope possible even with sporadically dynamic motion. Although the proposed system is small, economical and accurate for quasi-steady slope measurement, since it contains a freesurface the evolution of the liquid surface that has no direct relation to the real slope must be excluded for any rapid rotations or translations. For various artificial motions the response of the sensor is analyzed and simplified modeling equations are proposed.


The characteristics of a tilt sensor utilizing the resistance change of an electrolyte associated with inclination is investigated, and a dynamic compensation modeling is proposed to make the real-time measurement of the absolute slope possible even with sporadically dynamic motion. Although the proposed system is small, economical and accurate for quasi-steady slope measurement, since it contains a freesurface the evolution of the liquid surface that has no direct relation to the real slope must be excluded for any rapid rotations or translations. For various artificial motions the response of the sensor is analyzed and simplified modeling equations are proposed.