초록 열기/닫기 버튼

Background/Aims: The application of glycated hemoglobin (HbA1c) for the diagnosis of diabetes is currently under extensive discussion. In this study, we explored the validity of using HbA1c as a screening and diagnostic test in Chinese subjects recruited in Nanjing, China. Methods: In total, 497 subjects (361 men and 136 women) with fasting plasma glucose (PG) ≥ 5.6 mmol/L were recruited to undergo the oral glucose tolerance test (OGTT) and HbA1c test. Plasma lipid, uric acid, and blood pressure were also measured. Results: Using a receiver operating characteristic curve, the optimal cutoff point of HbA1c related to diabetes diagnosed by the OGTT was 6.3%, with a sensitivity and specificity of 79.6% and 82.2%, respectively, and the area under the curve was 0.87 (95% confidence interval, 0.83 to 0.92). A HbA1c level of 6.5% had a sensitivity and specificity of 62.7% and 93.5%, respectively. When comparing the HbA1c ≥ 6.5% or OGTT methods for diagnosing diabetes, the former group had significantly higher HbA1c levels and lower levels of fasting and 2-hour PG than the latter group. No significant difference was observed in the other metabolism indexes between the two groups. Conclusions: Our results suggest that HbA1c ≥ 6.5% has reasonably good specificity for diagnosing diabetes in Chinese subjects, which is in concordance with the American Diabetes Association recommendations.


Background/Aims: The application of glycated hemoglobin (HbA1c) for the diagnosis of diabetes is currently under extensive discussion. In this study, we explored the validity of using HbA1c as a screening and diagnostic test in Chinese subjects recruited in Nanjing, China. Methods: In total, 497 subjects (361 men and 136 women) with fasting plasma glucose (PG) ≥ 5.6 mmol/L were recruited to undergo the oral glucose tolerance test (OGTT) and HbA1c test. Plasma lipid, uric acid, and blood pressure were also measured. Results: Using a receiver operating characteristic curve, the optimal cutoff point of HbA1c related to diabetes diagnosed by the OGTT was 6.3%, with a sensitivity and specificity of 79.6% and 82.2%, respectively, and the area under the curve was 0.87 (95% confidence interval, 0.83 to 0.92). A HbA1c level of 6.5% had a sensitivity and specificity of 62.7% and 93.5%, respectively. When comparing the HbA1c ≥ 6.5% or OGTT methods for diagnosing diabetes, the former group had significantly higher HbA1c levels and lower levels of fasting and 2-hour PG than the latter group. No significant difference was observed in the other metabolism indexes between the two groups. Conclusions: Our results suggest that HbA1c ≥ 6.5% has reasonably good specificity for diagnosing diabetes in Chinese subjects, which is in concordance with the American Diabetes Association recommendations.